SAS “2024년 AI가 기업의 현명한 의사결정 지원할 것”
SAS가 2024년 AI 시장 전망을 발표했다. 이번 발표는 AI의 주요 트렌드, 비즈니스 및 기술 발전을 예측하고, 각 산업에서 AI의 활용과 사회적, 경제적 영향에 대한 깊이 있는 인사이트를 제공한다.
1. 생성형 AI, 산업별 AI 전략 강화
2024년에 기업들은 생성형 AI를 산업별 AI 전략을 보완 및 강화하는 요소로 활용하게 될 것이다. 예를 들어, 금융권에서는 스트레스 테스트 및 시나리오 분석에 사용되는 시뮬레이션 데이터를 통해 위험을 예측하고 손실을 예방하며, 의료 서비스 산업에서는 개인 맞춤형 치료 계획을 세울 수 있을 것이다.
2. AI 활용 새로운 일자리 창출
2023년에는 AI로 인해 사라질 일자리를 걱정했다면, 2024년에는 AI가 창출할 일자리에 관심이 높아질 것이다. 대표적으로 모델의 잠재력을 실제 적용과 연결시키는 프롬프트 엔지니어링(Prompt Engineering)을 예로 들 수 있다. .
3. 책임감 있는 AI 마케팅 강화
마케팅 담당자는 AI의 오류를 인식하고 편견이 개입할 수 있는 가능성을 경계하는 등 의식적으로 책임감 있는 마케팅을 실천해야 한다. AI를 생성하거나 적용하는 사람은 그 영향력에 대한 책임이 있기 때문에 모든 마케팅 담당자는 기술적 노하우에 관계없이 모델 카드를 검토하고, 알고리즘의 효과 및 공정성을 검증하며 필요에 따라 이를 조정할 수 있어야 한다.
4. 금융권, AI로 증가하는 사기 범죄 대응
소비자들이 금융 사기에 대한 경각심을 높이고 있지만, 사기꾼들은 생성형 AI와 딥페이크 기술을 활용해 수십조 원 규모에 달하는 사기 실력을 키우고 있다. 금융기관이 급증하는 피싱 및 다양한 사기에 대해 더 큰 책임을 지도록 하는 규제 변화로 인해 그간 AI 도입에 미온적이었던 은행 및 소규모 금융 기관들이 AI를 적극적으로 도입하게 될 것이다.
5. CIO, 쉐도우 AI(Shadow AI) 문제 직면
과거에 ‘쉐도우 IT’로 어려움을 겪었던 CIO들은 이제 IT 부서의 공식 승인이나 모니터링 없이 조직에서 사용하거나 개발한 솔루션인 이른 바 ‘쉐도우 AI’에 직면하게 될 것이다. CIO는 이를 어느 정도까지 수용해야 하는지, 관련 위험으로부터 조직을 보호하기 위한 안전장치 마련에 고민하게 될 것이다.
6. 새로운 첨단 기술로 멀티모달 AI(Multimodal AI)와 AI 시뮬레이션이 부상할 것
생성형 AI의 차세대 목표는 텍스트, 이미지 및 오디오를 단일 모델로 통합하는 멀티모달 AI(Multimodal AI) 구현이다. 멀티모달 AI는 다양한 범위의 입력을 동시에 처리할 수 있어 더 많은 상황 인식 애플리케이션으로 효과적인 의사 결정을 가능하게 한다. 일례로 3D 객체, 환경 및 공간 데이터의 생성이 가능하며 증강현실(AR), 가상현실(VR), 디지털 트윈과 같은 복잡한 물리적 시스템의 시뮬레이션 등에 적용될 수 있다.
7. 디지털 트윈 도입 가속화
AI와 사물인터넷(IoT) 분석과 같은 기술은 제조, 에너지, 정부 등 경제의 중요한 산업 부문에 활력을 불어넣고 있다. 2024년에는 실시간 센서와 운영 데이터를 분석하고 공장, 스마트 도시, 에너지 그리드와 같은 복잡한 시스템의 복제본을 생성하는 디지털 트윈 기술이 확산되면서 AI와 IoT 분석의 도입이 가속화될 것이다.
8. 보험업계, AI로 기후 위기 대처
기후 변화는 이제 막연한 추측을 넘어 실질적인 위협이 되었다. AI는 보험사가 동적인 보험료 책정 및 위험 평가에서 이익을 실현하는 것 외에도 보험 청구 처리, 사기 탐지, 고객 서비스의 자동화와 품질 개선에 도움을 줄 것이다.
9. 정부 내 AI 중요성 확대
AI가 인력 수급에 미치는 영향은 정부에서도 예외가 아니다. 기업과 마찬가지로 정부도 생산성 증가, 단순 업무 자동화 및 인력 부족 문제를 해소하기 위해 AI와 분석에 점점 더 의존하게 될 것으로 전망된다.
10. 생성형 AI로 환자 치료 개선
건강을 증진하고 환자 및 보험 가입자 경험을 개선하기 위해 의료기관 및 보험사는 2024년 임상 실험에 사용할 환자별 아바타 생성, 개인화된 치료 계획 생성 등 맞춤형 의료를 위한 생성형 AI 기반 도구 개발에 적극적으로 나설 것이다.
11. 신중한 AI 적용이 보험사의 성패를 좌우할 것
현재 보험사들은 각자의 비즈니스 모델에 맞추지 않은 자율 시스템을 빠른 속도로 도입하고 있다. 이들은 AI를 이용해 보험 청구를 신속히 처리함으로써 지난 몇 년간의 실적 부진을 상쇄할 것으로 기대하고 있지만 구조조정 후 남은 인력에 업무가 집중돼 AI를 적정 규모에 윤리적으로 배포하기 위한 관리 업무에 어려움을 겪을 것이다.
12. 공중 보건 부문에서 학계의 AI 활용 폭 증가
공중 보건은 전례 없는 속도로 기술 현대화를 실현하고 있다. 약물 과다 복용이나 독감 경계 등 공중 보건의 개입이 필요한 요소를 예측하는데 데이터를 사용하는 것은 필수적이다. 글로벌 팬데믹 이후 국민 보호를 위해 뛰어난 기술과 협업이 필요하다는 인식이 확고해졌기 때문에 정부를 대신해 AI 기반 모델링과 예측을 수행하는 학계 연구원들이 점차 늘어날 것이다.
<저작권자(c)스마트앤컴퍼니. 무단전재-재배포금지>