엔비디아 L4 GPU 4개로 구성된 클러스터로 5시간 동안 문제 50개 중 34개 풀이… 추론 모델로 일반화 성능 입증
엔비디아가 AI 수학 올림피아드(AI Mathematical Olympiad)에 참여해 AI 추론 모델의 뛰어난 일반화 성능을 바탕으로 우승을 차지했다고 밝혔다. AI 수학 올림피아드의 최근 대회 마지막 며칠은 엔비디아 팀에겐 대륙을 넘나드는 릴레이였다.
미국 반대편 끝에 있는 두 팀원은 매일 저녁, 데이터 과학과 머신 러닝의 온라인 올림픽인 캐글(Kaggle)에 AI 추론 모델을 제출했다. 이후 복잡한 수학 문제 50개로 구성된 샘플 세트에 모델이 얼마나 잘 대응했는지를 확인하기까지 약 5시간의 긴장감 넘치는 기다림이 이어졌다.
결과를 확인한 미국 팀은 아르메니아, 핀란드, 독일, 북아일랜드에 있는 팀원들에게 바통을 넘겼다. 이 팀원들은 다양한 모델 버전을 테스트하고 수정하며 최적화하는 데 하루를 보냈다.
선임 응용 과학자인 이고르 깃먼(Igor Gitman)은 “매일 밤 점수를 보고 실망했다. 그러나 다음날 일어나 유럽 팀원들이 밤사이 보내온 메시지를 보면 다시 희망이 생겼다. 그리고 다시 도전했다”고 말했다.
대회 마지막 며칠 동안 엔비디아 팀은 공개 데이터세트 기준으로는 개선이 부족한 상황에 낙담했다. 그러나 AI 모델의 진정한 시험대는 보이지 않는 데이터에 대한 일반화 성능이며, 이는 엔비디아 추론 모델이 순위표의 최상위로 도약할 수 있었던 이유였다. 엔비디아 L4 GPU 4개로 구성된 클러스터를 사용해 제한 시간 5시간 내에 올림피아드 문제 50개 중 34개를 정확히 풀어낸 것이다.
자연어 추론과 파이썬 코드 실행 결합한 더 작고, 빠른 긴 사고 모델 구축
북아일랜드 팀원이자 캐글 그랜드마스터(Grandmaster)이며 수석 거대 언어 모델(large language model, LLM) 기술자인 다라 핸리(Darragh Hanley)는 “결국 우리가 마법을 부렸다”고 말했다.
엔비디아 팀은 네모스킬즈(NemoSkills)라는 이름으로 대회에 참가했다. 이는 가속화된 LLM 훈련, 평가, 추론을 위한 파이프라인 모음인 네모-스킬즈를 활용한 데서 따온 이름이다. 7인의 구성원은 LLM 훈련, 모델 증류, 추론 최적화에 걸쳐 각기 다른 전문 분야에 기여했다.
캐글 챌린지에는 2,200개 이상의 팀이 참가했으며, 이들은 AI 모델을 제출해 수학 문제 50개를 5시간 내에 풀어야 했다. 이는 대수학, 기하학, 조합론, 정수론에 걸친 국가 올림피아드 수준의 고난도 문제로 구성돼 있었다.
<저작권자©스마트앤컴퍼니. 무단전재-재배포금지>